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This paper serves two purposes. On one hand it corrects an error made in an 
earlier paper and brought to my attention by a paper of Borowiec, who noted 
some problems with the "Hyperchristoffel connection." It is shown here that 
the "Hyperchristoffel connection" does not transform like a connection, nor is 
it metric, as I erroneously claimed. On the other hand, the hyperspin geometry 
is reformulated in terms of G-structures, also motivated by Borowiec's comment. 
This provides a mathematically precise, index-free formulation of hyperspinors 
and Bergmann manifolds, and in addition allows me to use the old results of 
Weyl-Cartan, corrected by Kobayashi et al., about the existence of torsion-free 
G-connections. I find that in general a BN, N ~ 2, does not possess a torsion-free 
G-connection. 

1. I N T R O D U C T I O N  

This paper  is d ivided into two m a i n  parts. The first part,  ma in ly  

con ta ined  in Section 2, corrects a mistake in my paper  on  the "Hyperchr is t -  
offel connec t ion"  (Holm,  1986), where I thought  that  I discovered a un ique  
torsion-free and  metric connec t ion  for the Fins ler  geometry of  Bergmann  
manifolds .  I called it "hyperchristoffel  connec t ion"  because  of  its s imilari ty 
to the Christoffel fo rmula  of  R i e m a n n i a n  geometry.  Borowiec (1988) po in ted  
out  some problems with the connec t ion ,  namely  that one par t icular  ident i ty  
was not  fulfilled, and  c la imed that the "hyperchristoffel  connec t ion"  did 
no t  t ransform like a connect ion .  Though  his f indings were correct, the 
a rguments  he gave were not  conclusive because  he did not  take into account  
the special propert ies  of  the hypersp in  structure. He based his analysis  
solely on the chronometr ic  g. Due to the compl ica ted  structure of g, there 
are m a n y  relat ions among  its components ,  which have to be taken into 
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account. This can be done by using the frame field or as an independent 
dynamical  tensor field, and looking upon g as a derived field. I will review 
his argumentation and present the correct way of looking at this problem. 

The second part  of  this paper  is mainly a reformulation of  the hyperspin 
theory in terms of G-structures, as at tempted by Borowiec. Borowiec used 
as group G the invariance group of the chronometric g, without specifying 
g or G. This is important  because for a general N- ic  form there might be 
no invariance group, and moreover,  if there is, then it might not be the 
correct structure group. I will explicitly state the groups G which are used 
for defining a hyperspin structure and thereby hopefully remove any uncer- 
tainties about  the structure. My definition reveals more clearly the mathe- 
matical structure of  the theory by using fiber bundle formalism, it is an 
index-free formulation, and one can use known results in the theory of 
G-structures to show that for N >  2, a BN does not possess in general a 
torsion-free G-connection.  

What follows is only a short review of Bergmann manifolds, as details 
can be found in D. Finkelstein et al. (1986) and Holm (1988). 

The idea of hyperspinors originated from an attempt to use spinors as 
the building blocks of  time space, as it is done in the SL2 := SL(2, C) spinor 
calculus. This calculus has been known at least since van der Waerden's  
(1929) spinor analysis and has been extended by many authors; the best 
comprehensive source about the subject might be Penrose and Rindler 
(1984). Spinorial techniques have long been helpful in classical gravity, as, 
for instance, in the Petrov classification, the lens effect, or the positive 
energy theorem. Recently Ashtekar (1987) demonstrated with his new vari- 
ables some advantages of  the 2-spinor calculus in quantum gravity as well. 

I take here the admittedly speculative perspective that the appearance 
of spinors is not accidental and a convenient calculational tool, but reflects 
some deeper properties of  time space. The spinor structure may arise as 
an approximation of an underlying discrete network of quantum events 
(D. Finkelstein, 1989). 

The SL2 spinor calculus has a drawback; it works only if the dimension 
of the manifold is 22. In order to build higher-d.imensional time spaces and 
still use a kind of spinor substructure we had to modify the concept of  a 
spinor. The spinors we use are not spinors according to the usual definition, 
and lead to hyperspaces, so we call them hyperspinors. The Kaluza-Kle in  
spaces built from hyperspinors do not form Riemannian geometries. This 
should not be disturbing, because after all we do not know if the world in 
higher dimensions is still Riemannian. In fact, if one looks at how one can 
generalize the S0(3, 1) structure group (or Poincar6 group) of  ordinary 
space-time to higher dimensions, one finds that the hyperspin geometry is 
an extension as natural as Riemannian geometry is. Kaluza-Klein  theories 
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with non-Riemannian geometry have also been considered previously by 
Weinberg (1984), but for a different reason. 

Hyperspinors  are elements of  the complex vector space C N, which 
transform under  the fundamental  representation of SLN ; antihyperspinors 
are elements of  the complex conjugate space C ~ and transform according 
to the complex conjugate representation of SLN. A Bergmann manifold BN 
is a sufficiently differentiable N2-dimensional real manifold which admits 
hyperspinors.  In addition, there exists the spin map o-, which is a real linear 
isomorphism between the tangent space of BN (for a given basis) and the 
linear real space of sesquispinors H, where H = {~ ~ C N | Q N iV = ~H}. The 
superscript H stands for Hermitian conjugation. The sesquispinors can be 
represented by complex Hermitian N x N matrices a~IxrAA, where A is 
independent  of  A, but transforms according to the complex conjugate 
representation A of SLN.  The transformation law is therefore ~ '  = Aq~A H. 
Because of the Hermiticity condition on the elements of  H, the dimension 
of  a BN is fixed to be N 2. 

The spin map,  sometimes also called soldering form or Infe ld-van der 
Waerden symbol,  is the main dynamical variable of  the theory. It is used 
to construct the chronometric g, an SLN-invariant tensor field in the tangent 
space of BN. One starts with an SLN invariant (the determinant) in the 

�9 sesquispinor space and maps it with tr into the tangent space: 

1 " " A I A I  A2A  0 "ANAN (1) 
g~ ..... - ( N -  1) ! 6AI'"ANEAI""ANO" alO" 2a2"'  C~N 

The small Greek indices belong to the tangent space and run over 1 , . . . ,  N 2, 
whereas capital Latin ones are hyperspin indices and run over 1 , . . . ,  N. 
Repeated indices are summed over. The tensor obtained in such a way is 
symmetric in all its indices. The dual chronometric g", .... N is obtained by 
simply using the inverse to o- and repeating the procedure in (1). The 
normalization is chosen such that 

g~2.. ~Ng t3~2 ~N = 6~ ~3 (2) 

For N = 2 the chronometric is Einstein's metric field tensor g~t3, and 
a Bz is nothing else than a Lorentzian manifold with signature (+, , , - ) .  
For N > 2 the geometry is no longer Riemannian, but is known as Finsterian. 
In general the proper  t ime d~- is a homogeneous function of the coordinates 
of  degree N. With the notation "1) AA:= O-o~A'A'U ~ for a tangent vector v ~ one 
can write the invariant line element as 

dq'N = g . . . . . . .  v%v%" "" van = N de t (v  AA) 

Orthogonality is now a relation between N vectors, because g is an 
N- ic  Ibrm. Another new aspect is that g no longer provides an isomorphism 
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between the vector space and its dual. Lowering an index of a vector results 
in a covector with N -  1 indices. The future light cone is defined to be the 
o'-image of  the positive-definite sesquispinors, giving the hyperspin 
geometry a global causal structure. 

Taking the spin map as a dynamical variable leads to a hypergravity 
theory. A natural candidate for a Lagrangian of  hypergravity was introduced 
in D. Finkelstein et al. (1987) and S. Finkelstein (1988), which leads to 
interesting field equations and cosmological solutions (Holm, 1988). The 
spin map (7 was taken as the sole dynamical variable, justified in part by 
the existence of the hyperchristottel "connection".  

2. THE HYPERCHRISTOFFEL " C O N N E C T I O N "  

One of  the first questions I tried to decide was if for the Finsler case 
there exists an analog of the Christoffel connection of  Riemannian geometry, 
namely a torsion-free and chronometric connection. Chronometric means 
of  course that the covariant derivative of  g vanishes. In my paper (Holm, 
1986) I thought that the answer to that question was affirmative. The 
"connection C "  I found was 

1 
C~t3 v = - -  g~ '~v ( O~go~,~ + Ot3g~. ~ - O~g~o~,,~) (3) 

N 

I use here the notion of collective indices, where the kind of bracket 
stands for the symmetry, i.e., {. } stands for symmetrized, [. ] for antisym- 
metrized indices. The number of  indices is N ;  the number of  primes tells 
how many indices are omitted, i.e., {6'} = 6 1 . . .  6N-1 .  

I used an "Ansatz" for gv~,~C~t3)':=[o~fl, 31...6N_~] to solve the 
equation D g  = 0. Using the inverse chronometric, I could obtain C~o v, but 
did not verify that these coefficients were really connection coefficients, i.e., 
had the right transformation properties. Borowiec (1988) remarked that the 
[aft ,  ~1~2] for N = 3  did not transform into themselves (?) under gauge 
transformations, but did not quite specify which gauge transformations he 
had in mind. 

I calculated the transformation law of C under coordinate transforma- 
tions. Let us consider the transformation from a coordinate system x~ to a 
system with coordinates x'~,. Let X be the Jacobian matrix belonging to 
that transformation, i.e., X~t~, := OxJOx' t3, .  In this notation tensors transform 
as g,~t3 = g , W t 3 ' X ~ w X t 3 "  I also use the short-hand notation O~,X)'~, := X~tr,~,. 
For N = 3 one obtains 

Crct,~,y'~_V'~ vl3 y - l ) "  ~ T_! 2"y - - l "y '  V ~" _L.I~I) ' '~"o"  
.rx a ' - ' x  3 ' . r x  V , ~ a / 3  . ~ ' x  ~..rx c ~ , , / 3 , ~ g / 5  

r t x T - - l w '  ~ 1 u  "1- ~ - - l t o '  ~71J x r - - l t o '  x ~ v  

(4) 
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Apart  f rom the factor 2, the first two terms constitute the familiar 
t ransformation law of  a connection. For (3) to be a connection, the last 
three terms have to add up to �89 of the second term. That they do not is not 
so clear, because g-0v is derived from the spin map o-, and therefore not 
all its components  are independent.  Only for N = 2 can any symmetric 
tensor g~o with the Lorentz signature be derived from o-. For N > 2 the set 
of  all symmetric g ~  derived from tr is only a small subset of  the set of  all 
totally symmetric tensors t ~ .  For N = 2, o- has 16 real variables minus the 
6 coming f rom the local SL2 invariance. This leaves 10 variables for the 
derived object g~0, which is exactly the same number  of  variables as for a 
symmetric tensor t ~  in 4 dimensions. Therefore g and tr can be used 
interchangeably; neither variable contains more information than the other. 
For N = 3, o- has 81 - 16 = 65 real variables, but a totally symmetric tensor 
t~o~ in 9 dimensions has 165 free parameters.  Necessarily there are many 
algebraic relations among the components  of  g. Therefore a more careful 
analysis, where all these relations can be taken into account, is needed in 
order to show that (4) is not the usual t ransformation law of  a connection. 

The problem of  hidden identities can be solved if one uses ~r instead 
of  g in all calculations. This increases immediately the complexity of  the 
equations, because instead of a linear equation in g, one has to deal with 
a cubic equation in o- (for N =  3). Calculations are best performed in a 
determinantal  chart, where cr is a simple delta function. In this chart the 
chronometric  has the following form: 

1 
g A A B B c c  = 5 E A B C E A B c  

It  consists only of  ones and zeros (apart  f rom normalization). Even 
with this simplification calculations can hardly be done analytically. 
Equation (4) consists of  93 equations, and the examination is a task best 
suited for a symbolic calculation program like R E D U C E  (Hearn,  1987). 
Even with REDUCE,  I could not check (4) in its full generality. Therefore 
I took a special coordinate t ransformation X, which deviated only in one 
coordinate from the identity map. With this simplification I could show 
that the last 4 terms of (4) really did not add up to the familiar X-I~".~X'~,,~,. 
Because of  this fact, I agree with Borowiec: C does not t ransform as a 
connection, and as such is just defined in one coordinate chart. 

A second observation of  Borowiec is that apparently [aft,/zv] does 
not obey the identity 

(5) 

The contraction tensor h is defined as h"V,~ := g""~g~.~, (Holm, 1988) 
and has the property of  a projection operator  (Borowiec, 1988). The identity 
has to hold because of  the definition of [a/3, 6~r] and (2). Checking (5), one 
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finds that it implies 

1 o- ' r  o- ' r  cry" ~(O~g~+O~g~O-s(g~3,T,O~h .~+g~,O~h ~ - h  ~80~g~3)=0 (6) 

Again, the statement that this equation is not obeyed requires a rigorous 
proof  by looking at the S L  3 substructure because of possible hidden iden- 
tities in g. In order to keep the calculations manageable, I chose a concrete 
simple spin map that was constant in all but one coordinate. I used the 
form of the standard Hermitian basis of the Lie algebra of U3 with a suitable 
normalization as a basis for or. The spin map had a linear coordinate 
dependence only in one coordinate. I put equation (6) on the computer 
with R E D U C E  and obtained the result that (6) is false, and accordingly 
(5) is not fulfilled. While g~r3~CV,~ is a solution to Dg = 0, the inversion of  
the expression [aft,/.~u] to a connection C ~  is not possible. Because (5) 
is not true, a repeated application of g ~  to C ~  does not yield the same 
expression for [a/3,/xu] one started with. This also implies that C is not 
even metric. 

The only way in which C of (4) can be a connection is if the geometry 
of  the BN is so special that equations (4) and (5) are fulfilled. This means 
that there are many relations among the matrix elements of o- and its first 
derivatives. Although this cannot be excluded, it seems very unlikely. 
Moreover, it would put an unnecessary restriction on a BN. 

Because of the difficulty of performing local calculations even for 
N = 3, I turn now to a different approach to be able to make a statement 
of more global nature about the existence of a torsion-free chronometric 
connection. It uses the theory of G-structures. 

3. THE HYPERSPIN STRUCTURE 

In this section a definition of a hyperspin structure will be given, which 
is a more abstract way of  defining Bergmann manifolds in terms of G- 
structures. Bergmann manifolds are related to hyperspin structures in the 
same way as Riemannian manifolds are to O(n)-structures. 

The use of G-structures has the advantage of introducing the ter- 
minology of the nowadays very common fiber bundle formalism. Moreover, 
I can use some already known results in the theory of G-connections. I 
will be able to show that in general a BN, N > 2 ,  does not possess a 
torsion-free and chronometric connection. 

First I will review briefly the general theory of G-structures; for details 
I recommend the books by Kobayashi (1972) and Sternberg (1964). Let M 
be a real differentiable manifold of dimension n = N 2. Let L(M) denote 
the bundle of linear frames over M. The L(M) is a principal fiber bundle 
over M with structure group GL(n, R) := GLn, the general linear group. 



Connections in Bergmann Manifolds 29 

Let G be a closed Lie subgroup of GL,,. A G-structure Pc is then a reduction 
of  L(M) to the subgroup G. In other words, Pc is a differentiabte subbundle 
of  L(M) with structure group G. A G-connection is a connection in Pc. 

I start with the construction of the hyperspin structure corresponding 
to B2, because it is the manifold of classical general relativity. It is only a 
warmup exercise, because I know the outcome already, but it shows the 
way to generalize it to the case N > 2. 

The question to solve is how the structure group G for the tangent 
space of B2 arises if I only know the structure group G for the spinor space, 
in this case SL2. The answer is to look at how the elements �9 of  H transform, 
because they correspond to real tangent vectors through ~r. I recall that they 
transform under A ~ SL2 as q~' = A ~ A  n. This induces a real linear transfor- 
mation on the tangent space of  B2. Because of  the two-sided transformation 
behavior of ~ ,  the elements of  the center of SL2, which is Z2 := {1, -1}, get 
identified. This means the tangent space group G is SL2/Z2, which is a real 
subgroup of  GL(4, R), namely SO0(3, 1). Because the notion of a group G 
divided by its center Z will come up frequently, I will use a special notation 
for it. Let me define PG:= G/Z. Therefore, a B2 is a G-structure with 
G = PSL2. The appearance of  the proper orthochronous Lorentz group 
gives B2 a 4-dimensional Riemannian geometry with metrical tensor of 
signature (1, 3), a so-called Lorentz structure. 

Because I want to work with SL2 spinors, I also have to assume the 
existence of  a spinor structure P6 on M, which is a twofold covering of the 
bundle Pc.  Note that P~ is not a G-structure, but only a G-bundle. A 
necessary and sufficient condition for this cover to exist is the vanishing of 
a certain topological obstruction class. For an oriented and time-oriented 
Lorentzian manifold it is known (Bichteler, 1968) 2 that the obstruction class 
is equivalent to the second Stiefel-Whitney class of M. 

The spin map o" of Section 1 is a vector bundle isomorphism from the 
tangent bundle T(M) to H(M), where H(M) is a 4-dimensional vector 
bundle, whose typical fiber is the real linear space H defined previously. 

AA tr is here the linear transformation from a holonomic frame dx ~ to an 
'orthonormal frame A a  give by 

0 "A'4" = o'AA~ dx ~ (7) 

On the level of principle bundles o- can be thought of as an R4-valued 
one-form (the soldering form or 4-bein) on the PSL2 bundle. It is this 
"soldering" that distinguishes the G-structure from other principle G- 
bundles and makes it a reduction of L(M). In a way the spin map is kind 
of  a Higgs field breaking the symmetry of GL4 to PSL2 (Trautmann, 1979). 

2See also Baum (1981) for a more general theorem. 
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Of course, the field which breaks the symmetry is actually the chronometric  
g, but g can be derived from o-. 

A G-connect ion on Pc  is a linear connection due to the soldering. On 
the PSL2 bundle there exists a unique connection Do which is characterized 
by the requirement to be torsion free. The Do is the well-known Levi-Civita 
connection of Riemannian geometry. The uniqueness of  Do can be proven 
as well in the context of  G-structures, as is done, for instance, in Sternberg 
(1964). 

Because of the existence of the spinor structure, Do can be lifted to an 
SL2 connection Vo, acting on Weyl spinors. This gives us then the unique 
spinor connection Vo. The metricity of  Do and Vo is inherent in the statement 
that they are PSL2 and SL2 connections, respectively. Metricity means that 
they satisfy 

Dog = 0, Voe = 0 (8) 

where g is the PSL2-invariant chronometric and e is the antisymmetric SL2 
invariant Levi-Civita spinor. 

The components  of  the connection with respect to a holonomic frame 
C and with respect to an orthonormal frame w are related by the usual 
t ransformation law of  a connection: 

w = o-Co --1 + o- do" - l  (9) 

After supplying this equation with indices and some rearranging, one 
obtains 

DI30"AAa : =  O~30"AA a -- o 'aayC 'Yo t  fl "F" wAA[3Bflo'BIBot 

= O~O'Aaot - -  o'AAwCWal 3 -I- (SABFI3AB + ~ABFI3AB)o'BB a = 0 ( 1 0 )  

The second equality used the lift of  the vector connection w to a spinor 
connection F. This equation was called torque freeness in a previous paper  
(Holm, 1988), but from the point of  view of G-structures it is a natural 
consequence. 

The generalization to N >  2 is now an easy task because it involves 
only a change of the structure groups. The group acting on hyperspinors 
is SLN, while the group acting on the sesquispinors is PSLN, also known 
as the projective unimodular  group. This comes about because a sesqui- 
spinor h e H transforms under  A ~ SLN as h ~ AhA H, so that the elements 
of  the center of  SLN, which is ZN, the cyclic group of order N, get identified. 
H is isomorphic to R n, n = N 2, and therefore the PSLN t ransformation on 
H induces a real linear t ransformation on R". This means that PSLN has a 
real realization as a subgroup of  GLn. Then SLN is an N-fo ld  covering 
group of  PSLN and its fundamental  representations are hyperspinors.  The 
homomorph i sm of  SLN onto PSLN can be made explicit in a similar way 
as for N = 2. Let the components  of  the isomorphism H ~ R n be given in 



C o n n e c t i o n s  i n  B e r g m a n n  M a n i f o l d s  3 1  

the form of a Hermitian basis Or~:~:~, together with a dual basis o-~ ~ ,  
satisfying 

�9 �9 v z z  v o-~o-~  aa  = Sa~Ba~ and cr ~o '~  = 6 

These matrices play the role of  the Pauli spin forms together with the identity 
matrix. For each A c SLN we then have an element L(A) c PSLN given by 

It is straightforward to prove that L(A1) = L(A2) if and only if A~ and A2 
are related by ei2"~/aA 1 = Aa for some a in { 1 , . . . ,  N}. The kernel of  this 
homomorph i sm consists of  the elements of  the form ei2 '~/a~, ,  where ~:~, 
denotes the identity in SLN, which is isomorphic to the group ZN. 

The last requirement for a hyperspin structure is that the structure 
group PSLN can be lifted to SLN, so that connections on vectors induce 
connections on hyperspinors.  Having the group aspects settled, I can define 
a hyperspin structure in the following way. 

Definition. A hyperspin structure Pd is a G-bundle with G = SLN 
together with a strong bundle homomorph i sm r/: Pd -~ Pc,  where Po is a 
G-structure with G = PSLN. Hyperspinors are sections in the associated 
bundle Pd x S, where S is the representation space on which SLN acts. 

So far we always worked in the fundamental  representation of SLN so 
that S = C N. Equivalently I can introduce hyperspinors as equivariant func- 
tions ~ :  Pd ~ S, where equivariant means that 

�9 (~A) = ~(A-~)q ' (~ )  

9t is a representation of  SLu acting on S, ~ e P~,  and A c SLu. 

The bundle homomorph i sm ~/is sometimes also called the prolongation 
of the structure group to its central extension (Dabrowski,  1988). It is a 
strong bundle map,  i.e., ~ induces the identity on M. The situation can be 
conveniently described by the following commutative diagram: 

Pd< P d x d  

Po ( Po x G 

M 

Here p: G-~ G is a group homomorphism with discrete kernel, and the 
horizontal arrows denote the group action. 
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For a paracompact  M a G-connection always exists (Kobayashi  et al., 
1963). A PSLN-connection D on Pc automatically satisfies 

Dg =O 

By assumption,  D can be lifted to a hyperspin connection V on P6.  Then 
V satisfies 

Ve = 0  

Equations (9) and (10) are equally valid for arbitrary N. 
The PSLN structures are in a 1-1 correspondence with the cross sections 

M -~ L(M)/PSLN (Kobayashi  et al., 1963). For N = 2 it is well known that 
the cross sections can be described by (0, 2) tensor fields of  signature (1-3). 
For a general N it is not clear if L(M)/PSLN is in a 1-1 correspondence 
with (0, N )  tensor fields g which can be brought into the normal form (1). 
This statement would only be true if there is no bigger group than PSLN 
that leaves such a g invariant. Therefore, one should focus the attention of 
a G-structure to its group G rather than to a particular G-invariant  tensor 
field. N- ic  forms do not characterize in general invariance groups as binary 
forms do. Our chronometric form g just does that because it was constructed 
that way. The frame field o- itself is a member  of  a coset in L(M)/PSLN. 
Working with ~r has the advantage that the constraints of  the chronometric 
g are taken care of  automatically. It is also clear from the construction that 
g and g-1 and tensors formed by contractions of  them are the only PSLN- 
invariant tensors that can be constructed in that particular representation. 

A topological question which arises in the context of  hyperspin struc- 
tures is the following: What are the conditions on PG which allow the 
existence of an N-fo ld  covering bundle P8 ? It turns out (Greub and Petry, 
1978) that this is a condition on the transition functions ~j: U~j ~ P6,  where 
Ui is a simple open covering of M, and Uij := U~ c~ Uj. From the transition 
functions one can construct a cocycle p, which in turn characterizes an 
element of  the second Cech cohomology group H2(M, ZN). The vanishing 
of this obstruction class gives a necessary and sufficient condition for the 
existence of  a prolongation P8 -~ Pc. A further investigation of  this obstruc- 
tion class is under way (Holm, 1989). Another interesting aspect is that the 
prolongation is not necessarily unique, so that there might be several 
inequivalent prolongations leading to inequivalent hyperspin structures. 

At the end of  this section I add a generalization of a hyperspin structure 
to a conformal  hyperspin structure which is a simple generalization of the 
procedure one does in the case of  4 dimensions. 

Definition. A conformal  hyperspin structure CP6 is a (~-bundle with 
(~=GL(N,  C) :=  GLN together with a strong bundle homomorphism 
~7 : CP~ ~ CPo, where CPG is a G-structure with G = GLN/S 1. 



Connections in Bergmann Manifolds 33 

A conformal  hyperspin structure may turn out to be useful in calcula- 
tions on the hyperspin level, because by making the hyperspin connection 
on CPd traceless, one obtains a connection on Pd.  The name conformal is 
justified because they transform the chronometric to a positive multiple of  
itself. In bundle coordinates one has 

_ �9 A A  N " A A  N . - -  
E A 1 . . . A N E A I . . . A N A A 1 B 1 A A 1 B  I �9 . . ~ _  B N I S -  B N - -  C E B 1 . . . B N E B I . . . [ 3 N  

where c~ R +, A~ GLN/S 1. 

4. W E Y L - C A R T A N  T H E O R E M  

In this section I will apply the Weyl-Car tan  theorem in order to show 
that in general a B N does not possess a torsion-free connection. The first 
of  the two theorems is in this form due to Kobayashi  and Nagano (1965): 

Theorem I. Fix a Lie subgroup G of GL(n,R), n-->3, and an n- 
dimensional manifold M which admits a G-structure. Then the following 
two statements are equivalent: 

(i) Every G-structure P on M admits a torsion-free connection. 
(ii) The Lie algebra g of  G is one of the following: 

gl( V), sl( V), co(V), o(V), gl( V, W), gl( V, W, c) with dim W -- 1 

In this notation V stands for the real vector space R", and gl, sl, co, 
and o are the Lie algebras of  the general linear, the special linear, the 
conformal,  and the orthogonal  group, respectively. For a subspace W of 
V, gl( V, W) denotes the Lie algebras of  linear transformations of  V, leaving 
W invariant. For dim W = 1 and a real number  c, gl( V, W, c) is defined as 
the subalgebra of  gl(V, W) consisting of matrices of  the form 

( c T r A  b ) ,  A ~ g l ( n - l , R ) ,  b~R ~-' 

For my purpose it is only important  to notice that all these Lie algebras 
have dim g-->ln(n - 1 ) .  

The second theorem I will need is the Weyl-Car tan  theorem, which in 
this form is due to Klingenberg (1959). 

Theorem 2. I f  G and M are defined as before, then every G-structure 
P on M admits a unique torsion-free connection if and only if the Lie 
algebra of  G is o(V). 

Both theorems are proved in this form in Kobayashi  and Nagano (1965) 
by using the method of  prolongations of  Lie algebras. I do not want to 
repeat their proofs, but instead show how the dimensional constraint on 
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the Lie algebra g of  G arises. For that purpose,  I examine Cartan 's  first 
structure equation: 

do" i = Wik ̂  o'k + T i (11) 

where o.i is a local f lame, a one-form on M, Wik is the connection one-form 
on M with values in g, and T ~ is the torsion two-form on M. Because do" 
and T are two-forms, they can be thought of  as tensors in V |  2 V*, where 
w is a map  of V-~ g and has components  in g |  V*. We ask now, when 
can (11) have a solution w with T = 0. Cartan 's  equation (11) is an algebraic 
system of  l n 2 ( n -  1) equations for n. d unknowns,  where d := dim g. The 
left-hand side of  (11) can take on arbitrary values by change of  the local 
section. This implies that (11) has a solution only for d >-�89 The 
solution is unique if d =�89  1). 

This constraint on the dimensions of  g has immediate implications for 
the existence of  a torsion-free connection on Pc. The structure group of  a 
BN is PSLN, and its Lie algebra has the dimension dim g - - 2 ( N  2 - 1 )  = 
2(n - 1). Because 2(n - 1) -< �89 - 1) with the equality only valid for n = 4, 
I know that for N >  2, s l (N)  does not belong to the class of  Lie algebras 
listed in Theorem 1. Therefore, I come to the important  conclusion that in 
general a hyperspin structure does not possess a torsion-free connection. 
Moreover,  according to Theorem 2, a unique torsion-free connection exists 
if and only if g = o (n), which means that the geometry is (pseudo-) Rieman- 
nian, and the unique torsion-free connection in this case is the Levi-Civita 
connection. The existence of  a unique torsion-free connection is therefore 
a special feature of  Riemannian geometry. It is impossible to find a Christ- 
offel-like formula for arbitrary Bergmann manifolds of  N > 2. 

5. C O N C L U S I O N S  

Thanks to the comment  by Borowiec, I was led to investigate the 
hyperchristoffel "connect ion"  again. I could verify that this "connect ion"  
really was not a connection because it did not have the right t ransformation 
properties. Defining a hyperspin structure as a N-fo ld  covering bundle of  
a special kind of  G-structure, I could use some known results about the 
existence of  torsion-free G-connections. The main result is that in general 
a BN does not possess a torsion-free connection. Of  course, this does not 
rule out the possibility that some manifolds might allow such a connection. 
I f  the manifold is special in some sense, it might be possible to find one. 
A trivial example is the flat manifold R ~, which has a trivial torsion-free 
connection. Another example is provided by the group manifolds formed 
by the covering group of  UN := U(N, C) (Holm, 1988). Also, there is a 
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torsion-free G-connect ion that exists. Incidentally, it is the same connection 
which respects the Riemannian structure on that group. 

It is also not ruled out that one can find some conditions on the torsion 
form that allow one to construct a unique connection, as is done, for 
example,  for G-structures where G =  U~ (Klingenberg, 1959). There the 
vanishing of  the mixed terms of the torsion form is a sufficient and necessary 
condition for the existence of a unique connection. 

The most likely alternative seems to be to take torsion in h ighe r -  
dimensional t ime space very seriously. I f  one cannot get rid of  torsion, then 
one should look for its physical implications, This is not necessarily a 
weakness in theory of  hyperspinors,  but merely an unexpected physical 
consequence. 

The existence of  torsion will make it impossible to treat tr as a sole 
dynamical  variable. Therefore one should derive the hypergravity field 
equations of  D. Finkelstein et al. (1987) treating the connection as another  
free variable. 

NOTE ADDED IN P R O O F  

I recently learned about  the comment  of  H. Urbantke (1989) who also 
noted that one can use the results of  Weyl-Cartan to show the nonexistence 
of  a torsion-free chronometric connection for Bergmann manifolds of  N > 2. 
But Urbantke also does not specify the group of  hyperspin manifolds, so 
my paper  hopefully will remove any prevailing uncertainties about the 
correct definition of a hyperspin structure. 
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